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Motivation – Predictive simulation of engineering systems 	



•  Data-driven representation of uncertainty	


•  Model parameters or structure	



•  Propagation of uncertainties 	


•  Model Verification and Validation (V&V)	



•  Certification and uncertainty management	
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 Simulation	



Experiment	


Simulation	
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Challenges for complex systems	



Lithium-ion battery cell 	



•  Multiple physics	



•  Multiple length/time scales	



•  Limited and noisy data	



•  sub-scale model calibration	



•  Large number of uncertain variables	


•  uncertainty propagation	



•  Expensive forward solves	



•  Verification	



• … 	





From deterministic to stochastic PDEs	



Probabilistic approach:	



•   Define an abstract probability space	



•   Represent data using random variables	


•  model parameters/structure, initial conditions, boundary conditions, …   

•  Solution is also stochastic:	



Stochastic PDEs:	



B.C. :	


I.C.  :	





Finite dimensional uncertainty:	



From stochastic to parametric solution	



independent with known distribution functions	



Parametric solution:	



•  A parametric problem in higher dimensions	



•  Challenge is when     is large	



•  Many ideas from high-dimensional function approximation apply	





A wish list for complex systems	



An ideal approach:	



•  Sampling-based (non-intrusive)	


•  Legacy codes	



•  Fewest possible simulations	



•  Fast convergence	


•  …	



•  Exploit solution structures 	


•  Anisotropy	



•  Low-rank	


•  Sparsity in some basis	



•  …	



Key to success:	



PDE	


Solver	



Complex	


PDE System


Random output	

Random inputs	





Multi-dimensional spectral approximation of finite-variance        : 	



Polynomial chaos approximation	


[Ghanem & Spanos 91, Xiu & Karniadakis 02, …]	



Number of basis:	



Ortho-normal basis:	



Chaos coefficients:	



as	



uniform                            Legendre polynomials	



Gaussian                           Hermite polynomials	



Askey scheme:	



Tensor-product basis:	





•  Intrusive (Galerkin projection) approaches	



•  Non-intrusive (sampling) approaches	



Curse-of-dimensionality: Exponential growth of computational complexity	



A bottleneck: Curse-of-dimensionality	



Fast convergence:	



Number of unknown coefficients:	



+	



-	



If        is sufficiently smooth w.r.t.  	



Exponential in 	





Random sampling: Monte Carlo	



Sample     randomly	 	 	 

Random sampling	



Deterministic	


PDE Solver
 Deterministic	



PDE Solver
 Deterministic	


PDE Solver


•   Slow convergence	



•   “No” curse-of-dimensionality
+	



-	





•  Curse of dimensionality remains	



Sample    on sparse grids	 	 	 


Deterministic	


PDE Solver
 Deterministic	



PDE Solver
 Deterministic	


PDE Solver


Tensor grid	

 Sparse grid	



•  Reduces curse-of-dimensionality	


  compare to tensor-product grids	



Pseudo-spectral on sparse grids – Stochastic collocation 	



Question: What if many of the PC coefficients are negligible? 	



exact interpolation	



[Xiu & Hesthaven 05, Babuska et al. 07, Ganapathysubramanian & Zabaras 07, …]	



+	



-	





Index of chaos coefficient (i)	
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Sparsity of solution w.r.t. PC basis	



        is sparse if it has a PC expansion with small number of important coefficients:	



A sparse solution can be approximated using                     samples!  	



The surprise:	





Random heat flux	

Hot streak	



Example – Heat transfer in a complex geometry	



Reynolds-averaged Navier-Stokes:	

 Sources of uncertainty:	



•  Heat flux on the cylinder wall (14 r.v’s)	



•  Location of the hot streak at inflow (1 r.v.)	



c.o.v = %14.43	



c.o.v = %57.74	



Random B.C.’s	





Legendre PC expansion of temperature is sparse	



Error in variance:	
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Chaos coefficients of temperature at the outflow midpoint  	



Index of chaos basis	



largest coefficient 	





A compressive sampling/sensing approach	



•  Geophysics	


•  Signal processing	


•  Imaging	


•  Statistics	


•  …	



Compressive sampling/sensing	



Our effort parallels works of:	



•  Claerbout	


•  Logan 	


•  Donoho	


•  Candes 	


•  Romberg	


•  Tao 	


•  DeVore	


•  …	





Problem setup – What are we after?	



Given            random samples (non-adapted):	



reconstruct the    -sparse Legendre polynomial chaos expansion 	



Investigate approximation property:	



•  As                   stability/convergence? 	



System	



PDE	


Solver	



Complex	


PDE System




Discrete representation: A matrix formulation	


An underdetermined linear system:	



•  This is an ill-posed problem	


•  It has infinitely many solutions	


•  Requires further constrains on solution	



Some observations:	



But we know that     is sparse!	



•   	



truncation error	



•      has to be estimated (e.g. statistically) 	





       -minimization – Sparsest approximation	



•  The solution is not always unique (for         )!	


•  It is an NP-hard problem!	



Main idea:    Among all possible solutions find the one	



                    with minimum number of non-zeros:  	



where	



•  Convex relaxation via    -minimization: Basis Pursuit Denoising (BPDN)	



A heuristic: 	





    -minimization/Basis Pursuit Denoising (BPDN)	



Main idea:  Use the convex relaxation	



where	



•  For sufficiently sparse coefficients and with some conditions on    :     	



•           and          share the same solution (for         )	


•  The solution is unique (for         )	



•   Quadratic programming solvers:	



•  Techniques such as: active set, projected gradient, interior-point continuation, etc. 	


•  In this work: SPGL1 with complexity	





minimum     -norm solution	

minimum     -norm solution	



non-sparse solution	


sparse solution	



    ball	

     ball	



Why     -norm promotes sparsity? 	


A geometric interpretation	





Example – Elliptic stochastic differential equation	



Uncertain diffusion:	



Solution is sparse in Legendre chaos if:	



•  Covariance is piecewise analytic [Bieri & Schwab 09]	


•  Smooth eigenfunctions 	


•  Fast decaying eigenvalues 	


•  e.g. Gaussian kernel	



Number of random variables: 	





   -minimization (BPDN)	

 Reference solution	
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Approximation of chaos coefficients	



Chaos coefficients of solution at the midpoint	


   -minimization (BPDN)	

 Reference solution	
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At 	



Index of chaos basis	





Convergence of solution statistics	



Number of samples N	

 Number of samples N	



Relative error in Mean	

 Relative error in Standard Deviation	



Monte Carlo	



Sparse-grid collocation (Clenshaw-Curtis) 	



    -minimization (BPDN)	



At 	





Random heat flux	

Hot streak	



Example – Heat transfer in a complex geometry	



Reynolds-averaged Navier-Stokes:	

 Sources of uncertainty:	



•  Heat flux on the cylinder wall (14 r.v’s)	



•  Location of the hot streak at inflow (1 r.v.)	



c.o.v = %14.43	



c.o.v = %57.74	



Random B.C.’s	





Reference solution	



Chaos coefficients of temperature at the outflow midpoint  	



Index of chaos basis	
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    -minimization N=80	





Temperature variance	



Convergence of the outflow temperature variance	



Monte Carlo  N=80	



Sparse-grid (CC) N=481 	



Reference solution	



    -minimization N=80	





Ingredients of a successful compressive sampling	



     When columns of      are “nearly” orthogonal = small mutual coherence:	

1	


[Donoho et al. 06] 	



This is a pessimistic bound! 	



[Donoho et al. 06] 	

2	

     When coefficient vector is “sufficiently” sparse:	





Bound on mutual coherence - Legendre PC basis	



Theorem:  	


As a result of the concentration of measure phenomenon on empirical	


correlation of PC basis:  	



Doostan & Owhadi, 11]	

[Doostan et al., 09;	





   -minimization is stable for Legendre PC expansion	



 Theorem (General stability of BPDN): [Doostan & Owhadi, 11]	



Let         be any essentially bounded function of i.i.d. random variables                            	


uniformly distributed on                 .  Assume there exists:	



such that:	



Then using	



random realization of solution:	



with overwhelming probability.	



Spars-grid 	





Hydrogen Oxidation in Supercritical Water	


Effect of parametric uncertainties on species concentration	



•  System of stiff nonlinear ODEs	



•  Uncertain reaction rates:  8 independent lognormals	



•  Uncertain enthalpies of formation:  5 independent Gaussians	



•  Prior work: [Phenix et al. 98, Reagan et al. 02/04, Le Maitre et al. 04/07, Najm et al. 09, Alexanderian et al. 11]	



Index of chaos basis	
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    -minimization	


Reference	



Hermite expansion of OH concentration (                  ) 	





Time (sec)	



mean + standard deviation	
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Statistics of OH concentration	



     -minimization	



Sparse-grid collocation	



  Reference solution	





Outlook 	



•  A possibility: Bayesian formulation of compressive sampling ?	



•  Question: How to optimally choose             for a given    ?	



Design of sampling strategy:	



•  Gaussian truncation error	


•  Laplace prior	


•  MAP equivalent to     -minimization	


•  New samples to minimize posterior uncertainty	



Non-smooth solutions:	



•  Sharp gradients/discontinuities	


•  Sparse approximation in multi-wavelet basis	



•  Adaptive sampling strategies	



Multi-physics/Multi-scale applications:	



•  Lithium batteries as a test bed 	



[Tipping 01, Ji et al. 07, … ] 	
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